607 research outputs found

    On Polyhedral Projection and Parametric Programming

    Get PDF
    This paper brings together two fundamental topics: polyhedral projection and parametric linear programming. First, it is shown that, given a parametric linear program (PLP), a polyhedron exists whose projection provides the solution to the PLP. Second, the converse is tackled and it is shown how to formulate a PLP whose solution is the projection of an appropriately defined polyhedron described as the intersection of a finite number of halfspaces. The input to one operation can be converted to an input of the other operation and the resulting output can be converted back to the desired form in polynomial time—this implies that algorithms for computing projections or methods for solving parametric linear programs can be applied to either problem clas

    Stochastic optimization on continuous domains with finite-time guarantees by Markov chain Monte Carlo methods

    Full text link
    We introduce bounds on the finite-time performance of Markov chain Monte Carlo algorithms in approaching the global solution of stochastic optimization problems over continuous domains. A comparison with other state-of-the-art methods having finite-time guarantees for solving stochastic programming problems is included.Comment: 29 pages, 6 figures. Revised version based on referees repor

    Nonlinear model predictive control based on Bernstein global optimization with application to a nonlinear CSTR

    Get PDF
    © 2016 EUCA. We present a model predictive control based tracking problem for nonlinear systems based on global optimization. Specifically, we introduce a 'Bernstein global optimization' procedure and demonstrate its applicability to the aforementioned control problem. This Bernstein global optimization procedure is applied to predictive control of a nonlinear CSTR system. Its strength and benefits are compared with those of a sub-optimal procedure, as implemented in MATLAB using fmincon function, and two well established global optimization procedures, BARON and BMIBNB.National Research Foundation, Singapore

    Time Domain Simulations of Arm Locking in LISA

    Get PDF
    Arm locking is a technique that has been proposed for reducing laser frequency fluctuations in the Laser Interferometer Space Antenna (LISA), a gravitational-wave observatory sensitive in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that comprise LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of arm locking including the expected limiting noise sources (shot noise, clock noise, spacecraft jitter noise, and residual laser frequency noise). The effect of imperfect a priori knowledge of the LISA heterodyne frequencies and the associated 'pulling' of an arm locked laser is included. We find that our implementation meets requirements both on the noise and dynamic range of the laser frequency.Comment: Revised to address reviewer comments. Accepted by Phys. Rev.

    Model predictive control system design and implementation for spacecraft rendezvous

    Get PDF
    This paper presents the design and implementation of a model predictive control (MPC) system to guide and control a chasing spacecraft during rendezvous with a passive target spacecraft in an elliptical or circular orbit, from the point of target detection all the way to capture. To achieve an efficient system design, the rendezvous manoeuvre has been partitioned into three main phases based on the range of operation, plus a collision-avoidance manoeuvre to be used in event of a fault. Each has its own associated MPC controller. Linear time-varying models are used to enable trajectory predictions in elliptical orbits, whilst a variable prediction horizon is used to achieve finite-time completion of manoeuvres, and a 1-norm cost on velocity change minimises propellant consumption. Constraints are imposed to ensure that trajectories do not collide with the target. A key feature of the design is the implementation of non-convex constraints as switched convex constraints, enabling the use of convex linear and quadratic programming. The system is implemented using commercial-off-the-shelf tools with deployment using automatic code generation in mind, and validated by closed-loop simulation. A significant reduction in total propellant consumption in comparison with a baseline benchmark solution is observed
    • …
    corecore